Cities Look To Small-Scale Treatment and Wastewater Recycling To Provide Water In A Warming World December 15th, 2023
Via The Conversation, a look at how some cities are working to provide reliable water in a warming world via small-scale treatment systems and wastewater recycling:
A lot can go wrong in a large urban water system. Pumps malfunction. Valves break. Pipes leak. Even when the system is functioning properly, water can sit in pipes for long periods of time. Water shortages are also a growing problem in a warming world, as communities across the Southwestern U.S. and in many developing nations are discovering.
That’s why cities have started experimenting with small-scale alternatives – including wastewater recycling and localized water treatment strategies known as decentralized or distributed systems.
Almost all water has value and can be cleaned and put to use.
Nature does a great job of cleaning water naturally as it flows through the ground. The soil physically filters water, and chemical and biological processes help strip away contaminants over time.
Those processes can be mimicked by water treatment plants and filters that are becoming increasingly effective.
Traditionally, cities have relied on centralized water systems that treat freshwater from a river or aquifer at a central facility, then distribute it through a large network of pipes. But that infrastructure becomes increasingly vulnerable to disruptions as it ages. And climate change, water scarcity and population growth increase stress on the system.
So, some cities are experimenting with what are known as distributed systems. These are small-scale water treatment, reclamation and recycling plants that are designed to collect, treat and reuse water in close proximity to both the source and the user. Some are separate operations. Others are connected to the larger system in a hybrid model.
Windhoek, Namibia, a city of about 430,000 people surrounded by an arid landscape, has been treating wastewater to achieve a drinking standard and returning it to homes since 1968 for all kinds of uses, including cooking and drinking. Storm water runoff, industrial water, wastewater and even agricultural runoff can be treated and recycled with modern technology to become drinkable.
All of these approaches, whether connected to the main system or as separate closed systems, can reduce the community’s overall demand for freshwater from rivers or aquifers.
Technology is making more water more reusable
Small-scale treatment can range from advanced filters inside individual homes to treatment at tanks serving clusters of homes or commercial, industrial and agricultural facilities.
Membrane-based and electrochemical processes have shown great potential for recovering fresh water, nutrients – which can be used for fertilizer – and energy from wastewater. These processes include reverse osmosis, which pushes water through a semipermeable membrane to remove impurities, and electrodialysis, which uses an electric field.
Microbial fuel cells go a step further and use the microbes present in wastewater to both produce electricity and facilitate the treatment of wastewater simultaneously. Another energy recovery method involves capturing biogas, primarily methane, from decomposing organic matter in wastewater in the absence of oxygen.
Unlike conventional treatment technologies, which work on a large scale, these emerging treatment processes use modular designs that can be easily scaled up or down.
They can also be used to create hybrid systems by supplementing large centralized systems with treated water, particularly in arid regions where water supplies are scarce.
How a hybrid system might help Houston
To test how a hybrid system might help avoid water shortages due to disruptions to the system, my colleagues and I created a model of Houston, a city with 7,000 miles of pipelines and 2.2 million residents. We simulated the impact that different types of water outages can have on that large centralized water supply and how distributed sources could help reduce the impact.
Overall, we found that installing hybrid systems did a better job supplying water and avoiding low flows across the city than the centralized system alone, particularly in areas where low water pressure is common.
The pressurized flow from reclaimed water could also limit the spread of contamination from sources such as a terrorist attack in the vicinity of the reclaimed water source.
That doesn’t mean new water sources are risk-free, of course. Additional sources connecting to a large water system can also introduce new potential sources of contamination, so the design of the system is important.
Several factors determine how effective distributed water can be. Population and building density, local water demand, soil characteristics, climate conditions, infrastructure and the state of existing water infrastructure all play a role. Research indicates that regions with high energy demands for water distribution, significant local water requirements and the capacity to reuse wastewater stand to gain the most.
As federal funds pour in to revitalize America’s water infrastructure, U.S. communities have a golden opportunity to bolster their large water systems with a decentralized approach. Globally, with climate change fueling extreme storms and making water supplies less reliable in many areas, small-scale decentralized systems could provide water security and increase water access in areas that are underserved today.
This entry was posted on Friday, December 15th, 2023 at 1:57 pm and is filed under Drought, Green Design, Resilient Infrastructure. You can follow any responses to this entry through the RSS 2.0 feed.
Both comments and pings are currently closed.
Comments are closed.
ABOUT
Black Swans / Green Shoots examines the collision between urbanization and resource scarcity in a world affected by
climate change, identifying opportunities to build sustainable cities and resilient infrastructure through the use
of revolutionary capital, increased awareness, innovative technologies, and smart design to make a difference in the
face of global and local climate perils.
'Black Swans' are highly improbable events that come as a surprise, have major disruptive effects, and that are
often rationalized after the fact as if they had been predictable to begin with. In our rapidly warming world, such
events are occurring ever more frequently and include wildfires, floods, extreme heat, and drought.
'Green Shoots' is a term used to describe signs of economic recovery or positive data during a downturn. It
references a period of growth and recovery, when plants start to show signs of health and life, and, therefore, has
been employed as a metaphor for a recovering economy.
It is my hope that Black Swans / Green Shoots will help readers understand both climate-activated risk and
opportunity so that you may invest in, advise, or lead organizations in the context of increasing pressures of
global urbanization, resource scarcity, and perils relating to climate change. I believe that the tools of business
and finance can help individuals, businesses, and global society make informed choices about who and what to
protect, and I hope that this blog provides some insight into the policy and private sector tools used to assess
investments in resilient reinforcement, response, or recovery.